Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Stem Cells ; 39(6): 707-722, 2021 06.
Article in English | MEDLINE | ID: covidwho-1121521

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway. Given that intravenous infusion of MSCs results in a significant trapping in the lung, MSC therapy could directly mitigate inflammation, protect alveolar epithelial cells, and reverse lung dysfunction by normalizing the pulmonary microenvironment and preventing pulmonary fibrosis. In this review, we present an overview and perspectives of the SARS-CoV-2 induced inflammatory dysfunction and the potential of MSC immunomodulation for the prevention and treatment of COVID-19 related pulmonary disease.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Mesenchymal Stem Cells/immunology , SARS-CoV-2/immunology , COVID-19/therapy , COVID-19/virology , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Humans , Immunomodulation , Lung/immunology , Lung/pathology , Lung/virology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/virology , Pandemics , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/virology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2/genetics
2.
Sci Adv ; 6(30): eaba6884, 2020 07.
Article in English | MEDLINE | ID: covidwho-706017

ABSTRACT

More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Pneumonia, Viral/therapy , Batch Cell Culture Techniques/methods , Bioreactors , COVID-19 , Coronavirus Infections/virology , Graft vs Host Disease/therapy , Humans , Metabolic Engineering/methods , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Transplant Recipients
SELECTION OF CITATIONS
SEARCH DETAIL